TCP 核心工作机制

TCP 的核心知识:如何保证传输可靠 + 如何提高传输效率

如何保证传输可靠:确认应答机制 + 超时重传机制

如何提高传输效率滑动窗口机制、流量控制机制、延时应答机制、捎带确认机制、拥塞控制机制

可靠机制

        TCP的可靠性主要是通过 确认应答 + 超时重传 来体现的。

1.确认应答机制

        先看发送发:在没有滑动窗口机制之前,发送方一次只能发送一段报文,且每次发送完后要等待接收方的ACK确认,只有在收到接收方的ACK确认应答后,才能将发送缓冲区里对应的数据释放掉,并开始发送第二段报文。如果在规定时间内未收到ACK确认,则尝试重传这段报文(超时重传机制)。

        再看接收方:接收方每次接收到报文后,都要给发送方返回一个确认应答报文ACK,告知对方已正确接收数据,期望下次收到报文段的起始序列号是ack。

        确认应答机制本质上是接收方对发送方报文中的seq进行确认,TCP是字节流传输协议,seq就代表数据,seq被确认就意味着数据被确认。只有确认应答机制 + 超时重传机制才能保证数据传输的可靠性,但数据传输效率比较低(RTT时间越长,传输效率越低)

2.重传机制

2.1 超时重传机制

        TCP超时重传机制是针对确认应答阶段数据丢包的情况,TCP传输过程中,发送方发出的报文可能会丢失,接收方返回给对端的ACK报文也有可能丢失。无论是哪种丢包,发送方在发送完报文后如果在指定时间内(RTO,Retransmission Timeout 超时重传时间)未收到对端返回的ACK报文,就会重传这段报文。重传次数达到一定量时,如果还是无法收到ACK报文,发送方就会发送RST报文,要求重置连接,如果重置连接都失败那就彻底断开连接。

RTO随RTT动态变化。RTT越小,网络环境越好,RTO也随之变小。

如果超时重传的数据,因再次超时而重传时,超时重传时间将是先前值的两倍。

        接收方收到重复的报文怎么办?TCP接收数据时都先将数据写入到接收缓冲区(Receive Buffer),再根据seq对缓冲区数据进行排序,方便应用程序正确有序地读取数据。新接收到的数据在写入缓冲区后,自然也要根据seq排序,这时就很容易判断出这段数据是否重复,如果重复就直接丢弃,这种机制确保了应用层读取到的数据是有序且不重复的。

        超时重传存在的问题是,超时周期相对较长。

2.2 快速重传机制

        快速重传(Fast Retransmit)机制,本质还是为了提高传输效率,它不以时间为驱动,而是以数据驱动重传,在没有触发超时重传前,就已经触发发送方重传数据了。

        TCP为提高传输效率,使用了滑动窗口机制,什么是滑动窗口机制,我们在第4章节会讲到。使用滑动窗口时,发送方短时间内可发出了5条报文

  • 接收方收到seq1报文,返回ack2;
  • 接收方收到seq3报文,未收到seq2,还是返回ack2;
  • 接收方收到seq4和seq5报文,但还未收到seq2,最终还是返回ack2;
  • 发送方收到了3次重复的ack2,表明seq2丢失了,便立即重传丢失的seq2;
  • 接收方收到seq2报文,返回ack6。

        快速重传的工作方式是当发送方收到三次冗余的(不含第一次)重复的 ACK 报文时,在RTO生效前,立即重传丢失的报文段,这样就可以有效缩短重传时间。但这里面还存在效率的问题,如果发送方发出了6条或更多条报文,假设 seq2 和 seq3 都丢失了,发送方在收到3次冗余的ack2报文后,此时它首先能肯定的是seq2丢失了,但不确定seq2之后的数据有没有丢失,怎么办呢?只能先把seq2发出去再说,等收到后面的ack后再判读有没有其它数据丢失。假设当前通信网络环境不佳,发送方发送了很多条报文出去,丢包率为10%,发送方如果还是按照上面这种方式重传报文的话,其实效率也没提高多少。为了解决快重传的效率问题,于是就有了选择性确认SACK(Selective Acknowledgment),该参数位于TCP报头的Options,发送方可通过SACK值来判断哪部分数据丢失,有针对性地进行快重传,大大提高了重传效率。

2.3 SACK

        选择性确认(SACK,Selective Acknowledgment)用于数据重传机制,位于TCP报头的Options。接收方可通过SACK参数告知发送方我方收到了不连续的数据块(ack=200,SACK=300-400),发送方可根据此信息检查哪部分数据丢失(对方收到200字节数据,接收到了300-400段,说明200-299段丢失了)并重传丢失的数据。

        TCP三次握手过程中,双方会通过“SACK Permitted”来互相声明自己是否支持SACK,只有双方都支持SACK时,TCP才会使用SACK。Linux开启SACK的方法如下

#linux系统中可通过修改net.ipv4.tcp_sack来决定是否开启SACK,Linux 2.4后默认开启
[root@reader ~]# sysctl -a | grep net.ipv4.tcp_sack
net.ipv4.tcp_sack = 1
[root@reader ~]# find / -name *tcp_sack*
/proc/sys/net/ipv4/tcp_sack
[root@reader ~]# cat /proc/sys/net/ipv4/tcp_sack
1
[root@reader ~]# 

可以用echo或sysctl -w 来临时修改tcp_sack
也可以在系统配置文件 /etc/sysctl.conf 中,添加如下一行代码,永久修改 tcp_sack
net.ipv4.tcp_sack = <new_value>

2.4 D-SACK

        Duplicate SACK 又称D-SACK,主要是通过SACK来告知发送方有哪些数据被重复接收了。通过D-SACK可让发送方知道是我方发出的报文丢失还是对端返回的ACK报文丢失。如,发送方收到ack= 500,SACK=300-400这样的报文,意味着500之前的数据都接收到了,且重复收到了300-400的数据。

#linux系统中可通过修改net.ipv4.tcp_dsack来决定是否开启SACK,Linux 2.4后默认开启
[root@reader ~]# sysctl -a | grep net.ipv4.tcp_dsack
net.ipv4.tcp_dsack = 1
[root@reader ~]# find / -name *tcp_dsack*
/proc/sys/net/ipv4/tcp_dsack
[root@reader ~]# cat /proc/sys/net/ipv4/tcp_dsack
1
[root@reader ~]# 

可以用echo或sysctl -w 来临时修改tcp_dsack
也可以在系统配置文件 /etc/sysctl.conf 中,添加如下一行代码,永久修改 tcp_dsack
net.ipv4.tcp_dsack= <new_value>

3.连接管理机制

        通过三次握手建立连接,再通过四次挥手断开连接。

        参考文章 TCP三次握手、四次挥手及状态转换详解

效率机制

        TCP为了能最大限度的提高传输效率,分别从三方面对传输过程进行优化

  • 提高发送方的发送量(发送速率),如滑动窗口机制;
  • 提高接收方的接收能力(对方是否能承受大的数据量),如流量控制机制、延时应答机制;
  • 提高网络的转发能力(网络是否能转发大的数据量),如拥塞控制机制。

4.滑动窗口机制

4.1 什么是缓冲区?

  • TCP在操作系统中开辟的一块缓存空间,用于缓存将要发送和接收的数据;
  • TCP有两个缓冲区,分别是发送缓冲区接收缓冲区
  • 发送缓冲区和接收缓冲区都是环形队列
  • 应用层调用send函数将数据写入发送缓冲区,TCP从发送缓冲区获取数据并发送;
  • 网络层递交给TCP的数据最终被存放到接收缓冲区,应用层调用recv函数将数据从接收缓冲区读出。

4.2 什么是窗口?

        为解决因确认应答机制而导致的传输效率低下的问题,TCP引入了窗口概念。即使在RTT较长的情况下,也不会降低传输效率。

        窗口分“发送窗口”和“接收窗口”,首先它俩针对的缓冲区有所不同,发送窗口针对的是发送缓冲区,而接收窗口针对的是接收缓冲区。其次,发送方发送窗口的大小由接收方接收窗口的大小决定,但两者并不完全相等(因为有网络延迟),接收窗口大小约等于发送窗口大小。还需注意的是,窗口大小并不代表缓冲区的大小

        接收窗口(大小)就是我们通常讲的窗口(大小),对应TCP报头中的Window字段,表示接收端还剩多少接收缓冲区可用于接收数据。

        发送窗口(大小)指的是发送缓冲区中“已发送但未收到ACK确认”和“可以发送但还未发送”两块缓冲区的组成部分。这两部分的数据无需TCP确认就可直接推送给网络层。

        “已发送但未收到ACK确认”很好理解,就是已发送的报文在未等到确认应答ACK返回之前,必须保留在发送缓冲区中,如果在规定时间(RTO)内收到了ACK报文,就将数据从缓存区清除,否则重传报文。

        “可以发送但还未发送”指的是“可以发送但还没来得及发送,且总大小在接收方窗口大小范围之内”。

        注意:窗口是会动态变化的,可大可小,并不是下图中画的那样只有20字节;

        下面图中,如果32 ~ 45字节的数据状态不变,46 ~ 51字节的数据也已成功发送且未收到ACK确认,那么此时发送方的可用窗口就是0,在未收到新的ACK确认应答前无法继续发送数据。 

4.3 发送方的滑动窗口

        如下图,当32 ~ 36字节的数据收到ACK确认应答后,如果发送窗口大小不变,则滑动窗口往右移动5个字节,此时发送窗口就变成了由37 ~ 56字节组成的缓冲区了,后续就可以继续发送52 ~ 56字节之间的数据了。

4.4 发送方滑动窗口的四个组成部分

  • SND.WND:发送窗口大小(由接收窗口Window大小决定);
  • SND.UNA:是一个绝对指针,指向的是#2已发送但未收到ACK确认应答内容的第一个字节数据所对应的序列号;
  • SND.NXT:是一个绝对指针,指向的是#3可以发送但未发送内容的第一个字节数据所对应的序列号;
  • 是一个相对指针,SND.UNA + SND.WND,指向的是#4未发送且不能发送内容的第一个字节数据对应的序列号。

可用窗口大小 = SND.WND -(SND.NXT - SND.UNA)

4.5 接收方的滑动窗口(三部分)

  • RCV.WND:接收窗口大小,会赋值给Window并发送给发送方
  • RCV.NXT:是一个绝对指针,指向的是期望发送方下次发送来的数据的起始序列号,即ack值
  • 是一个相对指针,RCV.NXT + RCV.WND,指向的是#4未收到且不可以接收的第一个字节数据对应的序列号。

5.流量控制机制

        通过接收方的接收能力来控制发送方的发送数据量

6.延时应答机制

        接收方通过延时一小会,想要给发送方回复一个接收能力(更大的窗口大小)

7.捎带应答机制

8.拥塞控制机制

        通过不同的策略,不断的探测网络的转发能力,调整发送方的发送数据量

  • 慢启动
  • 拥塞避免
  • 快恢复

粘包处理

异常处理


参考文章:4.2 TCP 重传、滑动窗口流量控制、拥塞控制 | 小林coding


http://www.niftyadmin.cn/n/5276964.html

相关文章

制作PPT找了一个校徽是方形的,如何裁剪为圆形的。

问题描述&#xff1a;制作PPT找了一个校徽是方形的&#xff0c;如何裁剪为圆形的。 问题解决&#xff1a;使用一个在线圆形裁剪软件即可。 网址为&#xff1a; https://crop-circle.imageonline.co/cn/#google_vignette

vue打包内存问题解决办法<--- Last few GCs ---><--- JS stacktrace --->

**<— Last few GCs —> [18484:0000026763669610] 106760 ms: Mark-sweep 4016.0 <— JS stacktrace —> FATAL ERROR: Ineffective mark-compacts near heap limit Allocation failed - JavaScript heap out of memory** 解决办法1&#xff1a; set NODE_OPTIO…

ubuntu qt 源码编译

官方源码下载地址 : 源码地址 选择要下载的版本 dmg结尾的是MacOS系统里使用的Qt库&#xff0c;qt-everywhere-opensource-src-4.7.0是Qt源码包&#xff0c;有zip和tar.gz两个压缩格式的&#xff0c;两个内容是一样的&#xff0c;只是zip一般在Windows下比较流行&#xff0c;…

青少年CTF-qsnctf-Web-Queen

题目环境&#xff1a; 题目难度&#xff1a;★★ 题目描述&#xff1a;Q的系统会不会有漏洞&#xff1f; 看到了登录窗口&#xff0c;使用burp suite工具进行抓包 burp suite抓包 admin 1 Repeater重放Send放包 Your IP is not the administrator’s IP address! 您的IP不是管理…

关于倾斜摄影三维模型数据的几何坐标变换的必要性分析

关于倾斜摄影三维模型数据的几何坐标变换的必要性分析 倾斜摄影三维模型数据的几何坐标变换是将相机坐标系下获取的倾斜摄影图像转换为地理坐标系下的三维模型数据&#xff0c;从而实现地理空间信息的表达与分析。几何坐标变换的重要性在于它对于模型数据的精度、准确性和可用…

高防服务器防御靠谱吗?

​  随着互联网的普及和信息技术的不断发展&#xff0c;网络安全问题日益突出。高防服务器作为一种专业的网络安全设备&#xff0c;在防御网络攻击方面扮演着越来越重要的角色。然而&#xff0c;高防服务器是否靠谱&#xff0c;是否能够有效地防御各种网络攻击&#xff0c;一…

你了解Redis中的跳跃表吗?

跳跃表的基本内容&#xff1a; 对于一个有序序列&#xff0c;链表相对于数组来说&#xff0c;删除和插入的效率要快很多&#xff0c;只需要改变指针的指向&#xff0c;但是在查找的时候&#xff0c;数组就要更占优势一些&#xff0c;可以随机访问&#xff0c;然而链表需要从头…

python学习笔记--异常捕获

异常场景 numinput("input you number:") n9000 try:resultn/int(num)print({} 除以num 结果为{}.format(n,result)) except ZeroDivisionError as err:print("0不可以作为除数&#xff0c;出现报错{}".format(err)) except ValueError as err:print(&quo…